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Abstract

We present a computational approach for the WKB approximation of the wavefunction of an electron moving in a

periodic one-dimensional crystal lattice by means of a nonstrictly hyperbolic system whose flux function stems from the

Bloch spectrum of the Schr€odinger operator. This second part focuses on the handling of the source terms which

originate from adding a slowly varying exterior potential. Physically, relevant examples are the occurrence of Bloch

oscillations in case it is linear, a quadratic one modelling a confining field and the harmonic Coulomb term resulting

from the inclusion of a ‘‘donor impurity’’ inside an otherwise perfectly homogeneous lattice.
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1. Introduction

This paper is the second part of a numerical study of semiclassical approximation of the motion of

electrons in short-scale periodic potentials. More precisely, we start from the Schr€odinger equation in one

space dimension,

i�hotwþ �h2

2m
oxxw ¼ e V ðxÞð þ VeðexÞÞw; x 2 R; ð1Þ
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with �h the Planck’s constant, m and e the electronic mass and charge and V 2 R the periodic potential

modeling the interaction with a lattice of ionic cores in one space dimension (x 2 R). The smooth and

slowly varying external potential Ve stands usually for an applied electric field or a Coulomb interaction
term. We first change to ‘‘atomic units’’ for which �h ¼ m ¼ e ¼ 1. Then we introduce the dimensionless

parameter e as the microscopic–macroscopic ratio; we assume it small and track wave packets with a spatial

spreading of the order of 1=e (see Fig. 1). We recast (1) in macroscopic variables x 7!x=e, t 7! t=e (i.e., we
study OðeÞ-wavelength solutions) and a scaled problem arises

ieotwþ e2

2
oxxw ¼ V

x
e

� �
wþ VeðxÞw; V ðxþ 2pÞ ¼ V ðxÞ; ð2Þ

for which the (semiclassical) limit e ! 0 is of special interest. We assumed the period to be 2p on the atomic
lengthscale for the sake of simplicity only.

A crystal is a periodic array of atoms which can be described through a Bravais lattice; their periodical

position is due to the nature of the bonding. In the binding process, neighbouring atoms share only a few

outer electrons, while their cores remain fixed at their lattice sites (adiabatic approximation). We begin by

neglecting possible impurities in the crystal (perfect crystal assumption); those shared electrons feel a pe-

riodic potential generated from the ionic cores, which periodicity match the lattice constant. The Bloch

theorem [1,8] ensures that eigenstates corresponding to this Hamiltonian can be written in the so-called

Bloch wave form, namely Wn
jðyÞ ¼ expðijyÞznjðyÞ, with the modulation znj having the same periodicity as the

underlying lattice and j being known as the crystal momentum. For each value of j, one obtains a set of

eigenvalues EnðjÞ which constitutes the spectrum for an electron with a certain (crystal) momentum j. As

we vary n and j, a discrete series of continuum intervals of possible values for the electron’s energy is

described. When ordered, they are usually referred to as the energy bands for the crystal and may be

represented with j taking values in the first Brillouin zone only, see Section 2.1 and [29]. Hence before going

further, some classical definitions are to be recalled:

• The Bravais lattice for (1), (2) is C ¼ 2pZ; its primitive cell is �0; 2p½.
• The reciprocal lattice C0 is the set of wave numbers j for which plane waves expðijxÞ have the same pe-

riodicity as the potential V ; i.e., C0 ¼ Z.

• The first Brillouin zone B is the Wigner–Seitz cell of the dual lattice C0 made of all j closer to zero than to

any other dual lattice point; B ¼� � 1
2
; 1
2
½.
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Fig. 1. Space scales for (1) and (2): the periodic potential, the wave packet and the exterior potential (bottom to top).
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Electrons in a crystal fill the energy bands starting from the lowest one (core band) and at temperature

T ¼ 0, the highest occupied band is either completely or partially filled depending on the material under

consideration. In the first case, no current can be transported and the crystal is an insulator; in the second
one, charge carriers can flow and the material is a metal. The difference between the minimum of the first

empty band and the maximum of the highest filled band is the energy band gap Eg (or simply ‘‘gap’’) and

represents the minimum quantum of energy required to trigger an interband transition. When the tem-

perature T > 0, electrons can move from the highest filled band towards the first empty one with a

probability of the order of expð�Eg=T Þ (see [1, Chapter 28]). Hence in case Eg is small enough, some

electrons will tunnel into the first empty band and the material will become conducting at the ambient

temperature; in this case, one speaks about semiconductors. The last completely filled band at T ¼ 0 is called

the valence band whereas the first empty one is the conduction band. In the ideal case and at low temper-
ature, all the crystal’s electrons sit in the valence band. The question is what happens if they get excited in

some way (by an increase of the temperature, for instance, or by light photons). In case the exciting energy

is big enough to overcome the band gap Eg, electrons will jump into the conduction band. It is erroneous to

think that no transitions occur in the opposite case [1]. However, in this work, we shall focus on one-

dimensional simulations during which interband transitions can generally be ignored. Bloch oscillations

(BOs) is a well-known phenomenon discovered by Zener while studying the quantum properties of an

electron in a (perfect) crystal submitted to a constant electric field [50] (see also [1,41]). The BO arises when

a small spatial tilt is added to the lattice; quantum particles do not fall along the potential’s slope but
perform counterintuitive periodic oscillations. We shall call hereafter the untilted potential ‘‘lattice’’ and its

sum with the applied field ‘‘tilted lattice’’ (see Fig. 2). Discrete systems such as semiconductor superlattices,

molecular chains, waveguide arrays or atoms captured in optical potentials share the property of exhibiting

BOs. For instance, if a static electric field is applied perpendicularly to the material layers in a superlattice,

charged particles do not react on the electric force as could have been expected; an oscillating current is

generated in contrast to the DC flow observed in bulk materials. This will be developed in Section 3.2. Laser

cooling of atomic vapors has also brought interest to such problems which have been considered purely

academic for long time [1]. Indeed, light potentials generated by standing waves have been used in many
experimental studies of quantum dynamics and BOs have been observed both with single atoms and Bose–

Einstein condensates in an accelerated standing wave. Placed in such a standing wave, an atom perceives a
−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. Lattice and ‘‘tilted lattice’’.
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periodic one-dimensional potential of the Mathieu’s type while the gravity term provides the slowly varying

linear tilt [23]. This case is to be investigated extensively within Section 3.3. Another case study of physical

interest is the study of a confining field corresponding to a quadratic exterior potential; this is developed
throughout Section 4.

The perfect crystal is only a mathematical idealization. Consider for instance the GaAs crystal; in reality,

it is quite common to encounter atoms of Germanium inside the lattice. These impurities have an extra

electron in the outer shell, so there is an extra fixed positive charge on some lattice sites together with an

extra negative one wandering throughout the crystal. It is generally assumed that this ‘‘donor electron’’

feels a potential slightly different from the ideal crystal’s one, namely an hydrogen-like equation can be

derived [1]:

EnðoxÞ
�

þ 1

�0jx� ximpurityj

�
WðxÞ ¼ Eextra e�WðxÞ; �0 ’ 16: ð3Þ

Generally, some of the corresponding energy levels lie inside the energy gap (see Section 5.1 for a simplified

computation) and they can be narrowed in case the second derivative of the conduction band En is big for

j ’ 0 (i.e., for a small effective mass). This leads to the concept of hydrogenic donor, which are shallow
donors, i.e., donor impurities whose ionic core resembles the one of the atoms they stand for. However,

even for certain deep donors that induce strongly localized perturbation in the crystal’s potential, the lowest

energy levels can still be described the same way, using the hydrogenic Hamiltonian; silicon is such an

example. We shall model the presence of a donor impurity by means of the Coulomb interaction term inside

(1):

VeðxÞ ¼
�e

�0jx� ximpurityj
; ð4Þ

with �0 the static dielectric constant of the medium. The small parameter leading from (1) to (2) is therefore

imposed by e ¼ 1=�0; according to [1], we shall assume that it is small enough to consider the problem as

being in semiclassical regime. Hence Section 5.2 is devoted to these numerical simulations with simple initial

data and a Kronig–Penney potential [36]. The Coulomb term increases the wave number of a particle close

to the ionized donor’s location and the WKB ansatz cannot remain single-valued because of the C0-peri-
odicity of the conduction band j 7!EnðjÞ.

For most of our examples, we checked the consistency by comparing the position densities obtained by

means of the WKB approximation with the outcome of a direct simulation of the corresponding

Schr€odinger Eq. (2) in Section 6. However, the ‘‘independent electron’’ description given by (1) and (2),

where interactions with other conduction electrons as well as lattice ionic cores are lumped to produce the

periodic potential, is limited in at least one important direction: namely, it assumes that the electron

perceives only the influence of the neighbouring ionized impurity and no repulsion from the other carriers.

Hence ‘‘screening’’, one of the most important manifestation of e�–e� interaction (see [1, Chapter 17]), is
completely left apart in such a simple model. A much more realistic description is given by the N-body

quantum equation,

i�hotwN þ �h2

2m

XN
j¼1

oxjxjwN ¼ e2

�0N

X
16 j<‘6N

1

jxj � x‘j
wN ; x 2 R; ð5Þ

with the N-wavefunction: wN � wN ðt; x1; x2; . . . ; xN Þ. The Schr€odinger–Poisson (Hartree) system being a
mean-field approximation which has been proved to be relevant when N ! þ1 (at least for bosons, i.e.,

without considering Pauli’s exclusion principle) in [3]. WKB approximations for this weakly nonlinear

model will be dealt with in the forthcoming Part 3 of this work.
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2. Two-scale WKB and K-branch solutions

We are concerned with highly oscillating wave-packet solutions of the Cauchy problem for the following
one-dimensional Schr€odinger equation:

ieotwþ e2

2
oxxw ¼ V

x
e

� ��
þ VeðxÞ

�
w; x 2 R; e ! 0; ð6Þ

where V is 2p-periodic and Ve is smooth. Plane waves of the form wðt; xÞ ¼ Aðt; xÞ expðiuðt; xÞ=eÞ for A and u
being possibly multivalued are generally used to describe these solutions (see [9,16,33–35,46]; however this

leads to a weakly coupled WKB system endowed with an Eikonal equation which still needs to be ho-

mogenized in order to describe the limiting behavior as e ! 0 of (6), see e.g., [17,18,29].

2.1. Correct WKB ansatz for nonhomogeneous problems

The naive ‘‘plane wave’’ ansatz does not have the correct structure since it leads to a system still

involving the small parameter e. Hence following [6,15,19,30], a two-scale amplitude can be considered

instead:

A t; x; y
�

¼ x
e

�
¼ A0ðt; x; yÞ þ eA1ðt; x; yÞ þ � � � ; A t; x; yð þ 2pÞ ¼ Aðt; x; yÞ: ð7Þ

We stress that in the present nonhomogeneous setting, we must assume that Aðt; x; yÞ 2 C, (see [15]) in sharp

contrast with the previously studied case for which Aðt; x; yÞ 2 R is sufficient. Taking this new dependence

into account inside (6) yields the expression:

�Aotuþ 1

2
oyyA
�

� AðoxuÞ2 þ 2iðoxuÞðoyAÞ
�
� V ðyÞð þ VeðxÞÞA

þ ie
2

2otA
�

þ Aoxxuþ 2oxAoxu� 2ioxyA
�
þ e2

2
oxxA ¼ 0: ð8Þ

• The Oð1Þ terms inside (8) cancel if and only if y 7!A0ðt; x; yÞ expðijyÞ is an eigenstate of

Hðp̂; yÞ ¼ � 1
2
oyy þ V ðyÞ, p̂ ¼ ioy , written in Bloch wave form and associated to the eigenvalue

EðoxuÞ ¼ �otu� VeðxÞ:

Hðy; p̂ÞðA0 expðijyÞÞ ¼ � otuð þ VeðxÞÞðA0 expðijyÞÞ; j ¼ oxu:

That is to say, we want y 7!WjðyÞ ¼ expðijyÞA0ðt; x; yÞ to satisfy for all ðt; xÞ 2 Rþ � R:

8y 2 R; Hðp̂; yÞWj ¼ � 1

2
oyyWj þ V ðyÞWj ¼ EðjÞWj: ð9Þ

Note that the slow variable x shows up only as a parameter; thus an Hamilton–Jacobi equation has been

derived from this cell problem,

otuþ EðoxuÞ þ VeðxÞ ¼ 0: ð10Þ

• The second step consists in writing A0ðt; x; yÞ ¼ a0ðt; xÞzjðyÞ with stationary 2p-periodic orthonormal
modulations: kzjkL2ð0;2pÞ ¼ 1. Then following [15], the solvability condition to make OðeÞ terms disappear

(using Fredholm’s alternative as in [19,30]) leads to the modified transport equation: (see [19, Remark 1])
ota0 þ E0ðoxuÞoxa0 þ
a0

oxE0ðoxuÞ þ bðt; xÞa0 ¼ 0: ð11Þ

2
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The phase-shift term is purely imaginary; bðt; xÞ ¼ iIbðt; xÞ (I standing for the imaginary part of a com-

plex number). It is sometimes referred to as the Berry phase [7], which stems from the interaction between

the periodic lattice and the slowly varying potential. It reads:

bðt; xÞ ¼ V 0
e ðxÞ

Z 2p

0

zjðyÞojzjðyÞ
����
j¼oxuðt;xÞ

dy: ð12Þ

However, one can always multiply (11) by 2�a0 and take its real part in order to derive the more usual

continuity equation for the intensity ja0j2:

otja0j2 þ ox ja0j2E0ðoxuÞ
� �

¼ 0; ð13Þ

which implies that
R
R
ja0ðt; xÞj2 dx ¼

R
R
ja0ðt ¼ 0; xÞj2 dx.

All in all, starting from the Schr€odinger equation (6), one has to consider the Bloch spectral decom-

position (9) producing a countable set of distorted plane waves Wn
j, n 2 N, associated to the energy bands

EnðjÞ. Thus a convenient nth band ansatz reads

~we
nðt; xÞ ¼ anðt; xÞ exp

iuðt; xÞ
e

� �
znjðx=eÞ; j ¼ oxuðt; xÞ; ð14Þ

where the unknowns evolve according to the nth band WKB system (10) and (11)

otuþ EnðoxuÞ þ VeðxÞ ¼ 0; otlþ ox E0
nðoxuÞl

� �
¼ 0; l ¼ janj2: ð15Þ
Remark 1. Eq. (11) indicates that it is now a quite involved task to reconstruct the principal amplitude a0
inside the original WKB ansatz since the Berry’s term (12) has to be computed too. However, we stress that
quadratic observables can still be deduced relying on the stationary phase argument presented in [29]

Section 3.2 because the phase-shift term expð�i
R t
0
Ibðs; xÞdsÞ is slowly varying. Moreover, it is known that

in some cases, one can achieve Ib � 0 by means of a smooth ‘‘gauge transform’’ zjðyÞ 7! expðihðyÞÞzjðyÞ,
see again [15,31] and references therein.
2.2. Derivation of the Bloch spectrum and K-branch solutions

In [29], we set up a numerical procedure to solve the Sturm–Liouville eigenvalue problem (9) relying on a
spectral method. Namely, we decompose each Bloch state Wj onto the base expðiðnþ jÞyÞ for n 2 Z and

j 2� � 1
2
; 1
2
½:

WjðyÞ ¼
X
n2Z

Wn
j expðiðnþ jÞyÞ; Wn

j ¼
1

2p

Z 2p

0

WjðyÞ expð�iðnþ jÞyÞdy:

It can be noted that Wn
j ¼ 1

2p

R 2p
0

zjðyÞ expð�inyÞdy, that is, the nth Fourier coefficient of the 2p-periodic
modulation. The 2p-periodic potential is treated the same way:

V ðyÞ ¼
X
n2Z

V̂ n expðinyÞ; V̂ n ¼ 1

2p

Z 2p

0

V ðyÞ expð�inyÞdy:

We then study the bilinear form for all n 2 Z:

hexpðiðnþ jÞyÞ;�1
2
oyyWj þ V ðyÞWjiL2ð0;2pÞ � expðiðnh þ jÞyÞ;EðjÞWjiL2ð0;2pÞ:
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It turns out that

hexpðiðnþ jÞyÞ;�1
2
oyyWj þ V ðyÞWjiL2ð0;2pÞ ¼ 1

2
ðnþ jÞ2Wn

j þ V̂ n�n0Wn0

j ;

and we are led to seek eigenvalues and eigenvectors of the truncated matrix:

Hj ¼

V̂ 0 þ 1
2
ðj� NÞ2 V̂ �1 � � � V̂ �2N

V̂ 1 V̂ 0 þ 1
2
ðj� N þ 1Þ2 ..

.

..

. . .
.

V̂ �1

V̂ 2N � � � V̂ 1 V̂ 0 þ 1
2
ðjþ NÞ2

0
BBBBB@

1
CCCCCA: ð16Þ

To carry out this diagonalization process, we chose to use the freely available SCILABSCILAB package (http://www-

rocq.inria.fr/scilab/); consult [29] Section 2.2 for some numerical results on the Bloch decomposition.
The energy bands j 7!EnðjÞ satisfying (9), n ¼ 1; 2; . . . are not known analytically; however, we can

exploit the smoothness and symmetry of En (consult [10] for precise results in 1D) by writing its Fourier

series (we drop hereafter the band’s subscript for clarity)

EðjÞ ¼ Ê0

2
þ
X
q2N�

Êq cosð2pqjÞ; Êq ¼ 4

Z 1=2

0

EðjÞ cosð2pqjÞdj: ð17Þ

Since the diagonalization process for (16) furnishes automatically the Fourier coefficients of the modula-

tions zj, the numerical strategy to derive the energy bands starts from the discrete set of eigenvalues of (16).
We apply a discrete Fourier transform in order to deduce the coefficients Êq, q 2 N which in turn allow to

compute EðjÞ in (17).

We have in mind to recover the geometric solution of (10) by means of an Eulerian numerical strategy as

suggested in, e.g., [20,47]. We thus differentiate (10) with respect to the space variable in order to derive a

1D scalar balance law; its geometric solution can be obtained by working out a kinetic equation [11,32]. The

idea is therefore to approximate efficiently this kinetic equation by means of a finite moment system in-

volving a closure process. Hence following [12], we briefly recall the construction of nonnegative ‘‘multi-

branch solutions’’ of the Cauchy problem for nondegenerate balance laws with uF 0ðuÞP 0,

otuþ oxF ðuÞ þ G0ðxÞ ¼ 0; uðt ¼ 0; �Þ ¼ u0; x 2 R; t > 0 ð18Þ

through a kinetic formulation. For any realizable moment vector ~m 2 RK , there exists a unique so-called K-

branch Maxwellian distribution, solution of an entropy minimization principle. It is determined by a vector

of nonnegative real numbers ~u ¼ ðu1; . . . ; uKÞ in decreasing order and reads

MK;~mðu1; . . . ; uK ; nÞ ¼
XK
k¼1

ð�1Þk�1Hðuk � nÞ; uk > ukþ1 P 0; ð19Þ

where H stands for the Heaviside function. Then, ‘‘realizable moments’’ are given by the following map
~u 7!~mð~uÞ

m‘ðu1; . . . ; uKÞ :¼
1

‘

XK
k¼1

ð�1Þk�1ðukÞ‘; ‘ ¼ 1; . . . ;K: ð20Þ

It realizes a smooth one-to-one mapping of the uks as long as uk > ukþ1 for all k under consideration. We

refer to [12,25,28,29] for details about K-multivalued solutions. Realizable moments (20) evolve in time

according to a non-strictly hyperbolic system of balance laws,

http://www-rocq.inria.fr/scilab/
http://www-rocq.inria.fr/scilab/
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ot

Z
Rþ

hðnÞf ðnÞdnþ ox

Z
Rþ

F 0ðnÞhðnÞf ðnÞdnþ G0ðxÞ
Z
Rþ

h0ðnÞf ðnÞdn ¼ 0 ð21Þ

for hðnÞ ¼ n‘, ‘ ¼ 0; 1; . . . ;K � 1. System (21) diagonalizes in Riemann’s coordinates; for smooth solutions,

the uks appearing in (19) are strong Riemann invariants and each one satisfies (18). System (21) is strictly

hyperbolic if and only if they are all distinct; in this case, uk > ukþ1 and the map ~m (20) is a diffeomorphism.

K-branch entropy solutions enjoy a ‘‘finite superposition principle’’ as shown in [44] since they match the

solutions by characteristics for K big enough:

8t > 0; _X ðtÞ ¼ F 0ðUðt;X ðtÞÞÞ; _Uðt;X ðtÞÞ ¼ �G0ðX ðtÞÞ: ð22Þ

This last property is of special interest since the WKB system (15) has to be understood as a Correspon-
dence Principle between quantum and classical mechanics. Since the Hamilton–Jacobi equation produces a

smooth but possibly multivalued solution, we interpret it relying on the preceding framework; differenti-

ating in the space variable, we pass from (10) to an equation of the type (18) for any energy band j 7!EnðjÞ:

otuþ oxEnðuÞ þ V 0
e ðxÞ ¼ 0; F 0ðnÞ ¼ E0

nðnÞ; G0ðxÞ ¼ V 0
e ðxÞ: ð23Þ

From (13), we deduce that the intensities~lðt; xÞ corresponding to each one of the phases ukðt; xÞ satisfy the

continuity equation:

8k ¼ 1; 2; . . . ;K; otlk þ oxðE0
nðukÞlkÞ ¼ 0: ð24Þ

We shall see in the next section how to deduce them in the general case of V 0
e ðxÞ 6¼ 0. In certain cases, some

rigorous results allow to determine the correct value of K 2 N so as to recover the geometric solution of

(23); see [29,32].

2.3. Numerical schemes for weak external potentials (no interband transitions)

In order to cope with the framework presented in Section 2.2, we plug F 0ðuÞ ¼ E0ðuÞ in (18) and this leads

us to: (‘ ¼ 0; . . . ;K � 1)

ot

Z
Rþ

n‘f ðnÞdn
� �

þ ox

Z
Rþ

n‘E0ðnÞf ðnÞdn
� �

¼ �‘V 0
e ðxÞ

Z
Rþ

n‘�1f ðnÞdn
� �

: ð25Þ

We mention that (25) constitutes a nonstrictly hyperbolic system which is furthermore nongenuinely

nonlinear in the sense of Lax since the energy bands are 1-periodic. Its fluxes read therefore,Z
Rþ

n‘E0ðnÞf ðt; x; nÞdn ¼
X
q2N�

�Êq

Z
Rþ

2pqn‘ sinð2pqnÞf ðt; x; nÞdn;

where ‘ ¼ 0; . . . ;K � 1 and f ðt; x; nÞ ¼
PK

k¼1ð�1Þk�1Hðukðt; xÞ � nÞ. The right-hand side can be computed

exactly with integrations by parts, see [29]. From now on, we consider a uniform Cartesian grid determined

by the two positive parameters Dx, Dt which stand for the mesh-size and the time-step, respectively. We

shall denote xj ¼ jDx, xjþ1=2 ¼ ðjþ 1=2ÞDx, tn ¼ nDt, and generic computational cells read
T n
j ¼ tn; tnþ1

� �
� xj�1

2
; xjþ1

2

h h
ðj; nÞ 2 Z�N;

with the parameter k ¼ Dt=Dx. Then, for a given K > 1, the grid functions ð~mn
j ;~l

n
j Þ 2 ðRKÞ2 stand for some

numerical approximations of the moments in (25) ~mðtn; xjÞ and the intensities~lðtn; xjÞ in (24) on each T n
j . We
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recall that in the homogeneous case VeðxÞ � C 2 R, K-branch solutions are updated in time by means of an

explicit Euler marching method:

~mnþ1
j ¼ ~mn

j �
k
2

FKð~mn
j ; ~m

n
jþ1Þ

�
� FKð~mn

j�1; ~m
n
j Þ
�
; j 2 Z: ð26Þ

Relying on previous experience [25,27,28], we selected the simple local Lax–Friedrichs (LLxF for short)

numerical flux which in the present setting reads:

FKð~mn
j ; ~m

n
jþ1Þ ¼

XK
k¼1

ð
(

� 1Þk�1

Z ðu‘kÞ
n
j

0

 
þ
Z ðu‘kÞ

n
jþ1

0

!
n‘�1E0ðnÞdn

)
‘¼1;...;K

� max
k;j;jþ1

jE0ðukÞjn ~mn
jþ1

�
� ~mn

j

�
:

ð27Þ

A crucial step lies clearly in finding out the relations between the moments mks and the Riemann coordi-

nates uks; they constitute a Vandermonde system and have been solved in [44] for K ¼ 3; 4 (the case K ¼ 2 is

simple [12]). In the general case, K 2 N, the ‘‘Markov power moment problem’’ (20) has been solved exactly

in [45]. However, the numerical implementation of this exact solution is delicate and one could prefer the
point of view of an inverse problem for the quadrature formula,Z

Rþ
n‘MK;~mðnÞdn ¼ 1

‘þ 1

XK
k¼1

ð�1Þk�1u‘þ1
k ; ‘ ¼ 0; 1; . . . ;K � 1;

as developed for instance in [21,48]. So, in this perspective the K-branch solutions uk’s are but the zeros of
the Chebyshev polynomials associated to the Maxwellian distribution MK;~mðnÞ. In this work, we still as-

sume that the number of phases will be limited in such a way the exact formulas of [44] permit to carry out

the inversion of the moment map ~m (20). Hence the scheme is fully determined by its numerical flux (27)

which can be seen as a flux-splitting method.

An additional feature to be included now is the handling of the source terms rendering for the exterior
potential VeðxÞ; the most reliable way to achieve this is to follow the well-balanced (WB) canvas. Relying on

[24,25], this procedure consists in localizing in space the exterior potential; hence the right-hand side of (25)

becomes

�‘Dx
X
j2Z

V 0
e ðxÞ

Z
Rþ

n‘�1f ðt; x; nÞdn
� �

dðx� xj�1
2
Þ; ‘ ¼ 0; . . . ;K � 1;

where dð�Þ stands for the Dirac mass in x ¼ 0. Then the scheme (26) is modified accordingly:

~mnþ1
j ¼ ~mn

j �
k
2

FKð~mn
j ; ~m

�
jþ1

2
Þ

�
� FKð~mþ

j�1
2

; ~mn
j Þ
�
; j 2 Z; ð28Þ

where the ‘‘interface values’’ are given by

~m�
jþ1

2

¼ ~mð~u�
jþ1

2

Þ; Eð~u�
jþ1

2

Þ ¼ Eð~unjþ1Þ þ Veðxjþ1Þ � VeðxjÞ;
~mþ

j�1
2

¼ ~mð~uþ
j�1

2

Þ; Eð~uþ
j�1

2

Þ ¼ Eð~unj�1Þ þ Veðxj�1Þ � VeðxjÞ;

(
ð29Þ

which means that one locally follows steady-state curves of (25) starting from~unj�1. In case system (25) is at

steady-state, ~m�
jþ1

2

¼ ~mþ
j�1

2

¼ ~mn
j , and this implies ~mnþ1

j ¼ ~mn
j for all j; n 2 Z�N; this is the WB property.

However, since the energy bands j 7!EnðjÞ are not known explicitly, the computational cost of this root-

finding procedure might be considered as too high. Therefore, in case kVekC2
loc

ðRÞ takes only moderate values,
one can relax this processing combining every time-step (26) with



L. Gosse / Journal of Computational Physics 201 (2004) 344–375 353
8j 2 Z; ot~uðt; xjÞ ¼ V 0
e ðxjÞ; ð30Þ

to go back to a ‘‘Riemann coordinates’’ time-splitting approach. Another possibility to exploit (29) lies in

using the explicit formulas of the (periodized) parabolic band approximation or the homogenized Ham-
iltonian when the conduction band lies completely in the classical regime (see [17,18,29]) in order to ap-

proximate the inverse of j 7!EðjÞ.
The phase-shifts (12) bkðt; xÞ, k ¼ 1; 2; . . . ;K that would be needed to build up the full WKB ansatz (14)

read therefore:

bkðt; xÞ ¼ V 0
e ðxÞ

Z 2p

0

zjðyÞojzjðyÞ
����
j¼ukðt;xÞ

dy; k ¼ 1; 2; . . . ;K:

In order to complete the ansatz (14), we still have to deduce the values of~lðtn; xjÞ for j; n in Z�N once the

K-branch solutions ukðtn; �Þ are known at some time tn ¼ nDt > 0. This will be done accordingly; for all k
under consideration, we deduce from (24) that

lkðt; xÞ ¼ lðt ¼ 0; x0Þ
ox0
ox

����
����; x ¼ x0 þ

Z t

0

E0ðukðs;X ðsÞÞÞds; ð31Þ

and this paves the way for recovering numerically the ~ln
j out of the set of~u

n
j for all j 2 Z, k ¼ 1; . . . ;K. In

the general case, one can always write out of the Hamiltonian system (22) and (23) that,

d

dt
EðUÞ ¼ _UE0ðUÞ ¼ �V 0

e ðX ÞE0ðUÞ ¼ �V 0
e ðX Þ _X ¼ � d

dt
VeðX Þ;

which implies the conservation of energy along characteristic curves:

W ðX ;UÞ :¼ EðUÞ þ VeðX Þ ¼ Eðu0ðX ð0ÞÞÞ þ VeðX ð0ÞÞ; X ð0Þ ¼ s:

So, from any abscissa x 2 R, one can trace back the characteristic curve associated to the corresponding
value of ukðt; xÞ and each one satisfies

8k ¼ 1; 2; . . . ;K; Eðukðt; xÞÞ þ VeðxÞ ¼ Eðu0ðskÞÞ þ VeðskÞ: ð32Þ

This is a nonlinear equation for each sk where all functions involved are smooth. In case the initial phase u0

is sufficiently slowly varying and Ve is monotone, the following function:

½0; 2p� 3 s 7!FðsÞ ¼ W ðs; u0ðsÞÞ ¼ Eðu0ðsÞÞ þ VeðsÞ; ð33Þ

is strictly monotone thus Newton’s algorithm for the equations

FðskÞ � Eðukðt; xÞÞ þ VeðxÞ ¼ 0; x 2 ½0; 2p�; k ¼ 1; 2; . . . ;K; ð34Þ

will be efficient. For each xj ¼ jDx, j 2 Z, one can obtain the K corresponding values skj relying on the

formula (17). Thus intensities can be obtained by means of the centered approximation:

8k ¼ 1; 2; . . . ;K; ðlkÞ
n
j ¼ lðt ¼ 0; skj Þ

skjþ1 � skj�1

2Dx

�����
�����: ð35Þ

It can happen that for a given time t > 0 beyond caustic onset, x 7! skðt; xÞ becomes discontinuous since so is

ukðt; �Þ. As long as K is big enough, these points correspond to phase transitions separating for instance a

monovalued region from a multivalued one. They are under-compressive shocks [28], and are located on

caustics where it is anyway hopeless to expect correct values relying on the classical WKB method;
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otherwise, in case K is chosen too low, compressive Lax shock appear. There are also cases for which exact

computations can be achieved inside (32), see Section 3.1. We chose to limit ourselves to eight Fourier

coefficients in (17) for the computations and we initialized (24) and (25) as in [29].

Remark 2.From (29) and (33), one can observe that both thewell-balanced strategy for computing accurately

the conservative variables ~mn
j and the formula (35) to deduce the corresponding intensities~ln

j heavily rely on
the energy conservation property; see the analogy between (32) and (29). Thus this strategy will be especially

efficient on a computational level in cases where both functions x 7!W ðx; u0ðxÞÞ and p 7!W ð�; pÞ are one-to-
one; the first one in order to compute each characteristic’s foot sk, the second to derive the interface values~u�j�1

2
through (29). If one gives up the well-balanced option (28) and goes back to the time-splitting scheme (30),

then (35) will work under a weaker condition, namely x 7!FðxÞ is invertible, which may restrict ku0kC1 .

Other first integrals than (32) may exist for certain problems; the MAPLEMAPLE package can find them with the

functions intfactor and firint.
3. Bloch oscillations; linear potential Ve(x) =�Fx

The theoretical work of Bloch [8], and Zener [50], has shown that semiclassical electrons within a pe-

riodic potential subject to a constant electric field F will perform temporal and spatial oscillations. These

oscillations are only present if the coherence of the electron is not broken by scattering events [1]. The

period (also called Bloch time) and total (left–right maximum) amplitude of these so-called Bloch oscilla-

tions (BO) for the full Eq. (1) are given by sB ¼ 2p�h=eFd and, respectively, LB ¼ D=eF with d as the period

of the potential and D as the width of the band in which the electrons are moving. A simple Gedanken

experiment for realizing these oscillations in a carrier transport sense is to ‘‘put an electron’’ around j ¼ 0,
switch on the field quasi-instantaneously, and monitor, e.g., the position density oscillations. This is the

purpose of this section.

3.1. Setting of the problem and numerical approach

So far we are concerned with the simulation of system (25) in the special case V 0
e ðxÞ � �F which stands

for a constant applied electric field. In this context, the WB approach outlined in Section 2.3 may be

considered unnecessary; K-branch solutions are therefore to be updated by means of (26)–(30). We stress
that it is possible to perform exact computations in order to extract the intensities lkðt; �Þ from the velocities

ukðt; �Þ at any time t > 0 for k ¼ 1; 2; . . . ;K. Indeed, one sees from (22) to (23):

1
F

d
dt EðUÞ ¼ _X ) X ðtÞ ¼ X ð0Þ þ 1

F EðUÞ � EðUð0ÞÞf g;
_U ¼ F ) U ¼ Uð0Þ þ Ft:

(

All in all, this leads to the analytical solution of (32),

8k ¼ 1; 2; . . . ;K; sk ¼ x� 1

F
Eðukðt; xÞÞf � Eðukðt; xÞ � FtÞg ð36Þ

which boils down to the homogeneous formula presented in [29] as F ! 0 provided E is C1. Finally, one

finds an exact formula for ~lðt; xÞ:

lkðt; xÞ ¼ lðt ¼ 0; skÞ 1
���� � ox

Eðukðt; xÞÞ � Eðukðt; xÞ � FtÞ
F

	 
����; ð37Þ
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which can be easily approximated numerically at second order by means of centered differences: in certain

situations of physical interest, this approximate formula turns out to be even exact (see Section 3.3). We

found however that more accurate values for the intensities~ln
j can be obtained using different formulas. To

this end, we explain now briefly how to generate the same solution exploiting the classical ‘‘ray-tracing

method’’ (we shall use this technique to validate the numerical results). From (22) to (23), one deduces

easily:

8s; t 2 R� Rþ; x ¼ sþ 1

F
Eðu0ðsÞð þ FtÞ � Eðu0ðsÞÞÞ; uðt; xÞ ¼ u0ðsÞ þ Ft: ð38Þ

Thus, intensities can be deduced the following way:

lðt; xÞ ¼ l0ðsÞ
ox
os

����
����
�1

¼ l0ðsÞ 1
���� þ u00ðsÞ

F
E0ðu0ðsÞ
�

þ FtÞ � E0ðu0ðsÞÞ
�����

�1

: ð39Þ

It is clear that the spatial accuracy in x for the ‘‘ray-tracing method’’ decreases in the case rays expand, i.e.,

the geometrical spreading j ox
os j becomes big. However, formula (39) can be easily adapted to K-branch

solutions ~uðt; xÞ:

lðt; xÞ ¼ l0ðsÞ 1
���� þ u00ðskÞ

F
E0ðukðt; xÞÞ
�

� E0ðukðt; xÞ � FtÞ
�����

�1

: ð40Þ

Hence the whole ansatz (14) can be deduced from the simple numerical approach (25)–(30), supplemented

by (37) or (40) as soon as the eigenstructure of the matrix (16) is known.
3.2. Superlattices and Kronig–Penney’s model

The dynamics of an electron in a solid may be perturbed by, e.g., electron–phonon (crystal’s vibrations)

and electron–electron interactions. This is not rendered by the simple equation (1) which holds only for a

perfect static lattice and carriers assumed as being independent of each other. Moreover, scattering by
crystal’s imperfections should be taken into account [1]; hence the Bloch time sB can be quite big and

electrons cannot remain in ballistic regime during such a time interval. One possibility to overcome these

problems is provided by semiconductor superlattices which consist in alternating layers of different materials

(e.g., GaAs and AlxGa1�xAs). In the simplest case, a carrier’s wavefunction in the transverse direction is

approximated by a plane wave for a particle of effective mass m� [23]. In the direction perpendicular to the

layers, the carrier just ‘‘sees’’ a juxtaposition of potential barriers, i.e., a Kronig–Penney model, see [36].

Since the period of this potential can be made several orders of magnitude larger than the original lattice’s

one, the Bloch time sB is reduced accordingly and oscillations can be monitored [38]. After an appropriate
scaling, one obtains an operator of the following type:

V ðyÞ ¼ 1�
X
j2Z

1y2½p
2
þ2jp;3p

2
þ2jp�; HKP ðp̂; x; yÞ ¼ �1

2
oyy þ V ðyÞ � Fx: ð41Þ

and 1A stands for the characteristic function of a set A.
Hence we set up the discretization (26)–(37) for the initial data:

u0ðxÞ ¼ 1
2
exp

�
� ðx� pÞ2

�
; l0ðxÞ ¼

1

p
exp

�
� ðx� pÞ2

�
; x 2 ½0; 2p�:

In Figs. 3–5 are displayed, respectively, the values of ~uðt; �Þ, ~lðt; �Þ and E0ð~uÞðt; �Þ for

t ¼ 0:35; 0:7; 1:05; 1:4; 1:75 (from top to bottom). The parameters were F ¼ 0:75 which gives a Bloch time



0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0 1 2 3 4 5 6 7
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0 1 2 3 4 5 6 7
1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5 6 7
1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5 6 7
1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 1 2 3 4 5 6 71.3

1.4

1.5

1.6

1.7

1.8

1.9

Fig. 3. Wavenumber: Ray-tracing (left), ‘‘3-branch entropy solutions’’ (right).
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sB ¼ 4=3, Dx ¼ 0:04 and Dt ¼ 0:03. The periodic motion is clearly noticeable since the wavenumber~u ¼ oxu
scans the whole Brillouin zone (jBj ¼ 1). Because of the applied field, the solutions bifurcate repeatedly

from one phase to three and back; this constitutes a numerical difficulty as passing from three to one phase
means for the schemes turning back towards an area of nonstrict hyperbolicity in the state space.

On the one hand, it is likely that shock-capturing algorithms based on a viscous regularization of the

moment Eq. (25) will not be completely satisfactory in such a situation. The numerical viscosity inherent to

(26), (27) and (30) tends to separate phases even in the monovalued area as time increases; the WB ap-

proach (29) could be a possible fix in case of large time simulations, i.e., for low applied fields and big Bloch

times. In particular, this explains the difference in the intensities which can be observed on the bottom of

Fig. 4.

On the other hand, the ‘‘monokinetic schemes’’ of [27] could not lead to better results since the
solution is multivalued in T ¼ 0:35; hence the intensity would immediately concentrate into a Dirac

measure and be further expanded with an arbitrary (unphysical) profile mainly depending on the al-

gebra of the scheme used to solve (24). At last, we observe a good overall accuracy for the velocity

E0ð~uÞ throughout the whole time interval and the K-branch solutions are completely consistent with the

ray-tracing algorithm.

3.3. Optical lattices and Mathieu’s equation

A second experimental realization of Bloch oscillations is provided by cold atoms in optical lattices (e.g.,

lithium, sodium or cesium, etc.). One approximately treats them as a two-state system exposed to a strongly

detuned standing laser wave which induces a force described by the potential V ðyÞ ¼ �hX2
R

4d cosð2kLyÞ with

�hXR the so-called Rabi frequency, kL the steady laser beam’s wave number and d a detuning parameter.

Taking into account for gravity’s force make the atoms subjects to the Wannier–Stark Hamiltonian which

is smooth and reads after scaling (see [5,23,42,49]):

HWSðp̂; x; yÞ ¼ �1
2
oyy þ cosðyÞ � Fx:

Here, we used the discretization (26)–(37) with F ¼ 0:5 for identical initial data:

u0ðxÞ ¼
1

2
exp

�
� ðx� pÞ2

�
; l0ðxÞ ¼

1

p
exp

�
� ðx� pÞ2

�
; x 2 ½0; 2p�:

In Fig. 6, the values of~lðt; �Þ for t ¼ 0:5; 1; 1:5; 2; 2:5 (from top to bottom) are displayed; the values of~uðt; �Þ
and Eð~uÞðt; �Þ being very similar to the ones shown in Figs. 3 and 5. The parameters used were F ¼ 0:5
(sB ¼ 2) and Dx ¼ Dt ¼ 0:03. Since the conduction band for V ðyÞ ¼ cosðyÞ has a less steep j-derivative, the
effects of numerical viscosity are less important and phases stick more altogether. Looking at the fourth

picture on the right in Fig. 6, one sees a perfect recovery of the intensity at time T ¼ 2; this illustrates a

situation in which the second order approximation of (37),

lkðt; xjÞ ’ l0ðskÞ 1
���� �

EðukÞjþ1 � Eðuk � FtÞjþ1 � EðukÞj�1 þ Eðuk � FtÞj�1

2FDx

	 
����; ð42Þ

becomes exact even if the K-branch solutions ~unj are not perfectly rendered. This is a consequence of the

accuracy in the computation of the energy bands, see [29] and Section 2.2. If t � sB the Bloch period belongs

to N, then Ft 2 N and since the function j 7!EðjÞ is 1-periodic, (see Section 2.1 and [29])

8uk 2 R; k ¼ 1; . . . ;K; EðukÞ ¼ Eðuk � F sBÞ:

Hence, the numerator of (42) is zero and lkðt; xjÞ ¼ l0ðxjÞ since yk ¼ xj for all k ¼ 1; 2; . . . ;K is the unique

solution of (36). Similarly one would establish the same property for the approximation based on (40),
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lkðt; xjÞ ’ l0ðskÞ 1
���� þ u00ðskÞ

F
E0ðukÞj
�

� E0ðuk � FtÞj
�����

�1

; ð43Þ

since the derivative j 7!E0ðjÞ is also 1-periodic. Thus we have proved:

Proposition 1. For any value of F 2 Rþ in the Wannier–Stark HamiltonianHWSðp̂; x; yÞ ¼ � 1
2
oyy þ V ðyÞ � Fx

with V ðy þ 2pÞ ¼ V ðyÞ, the intensities~ln
j computed out of the numerical K-branch solutions~unj , (35) and (36)

with either (42) or (43) are exact at every time T ¼ nsB with n 2 N and sB ¼ 1=F .

The main difference between formulas (43) and (42) is the numerical rendering of caustics. Since caustics

are perceived as phase transitions for the K-branch solutions ~unj , the divided differences in (42) tend to

infinity. Similar blowup would occur in (43), but for a smaller value of Dx because it does not involve any

discrete differentiation. Both formulas tend to agree as Dx is decreased.
4. Study of the confining potential Ve(x) =
1
2
x2

The main motivation for the study of this potential stems from optical lattices placed inside a confining

magnetic field [15]; the corresponding Hamiltonian reads Hoscðp̂; x; yÞ ¼ � 1
2
oyy þ cosðyÞ þ 1

2
x2: This is

typically encountered while simulating, e.g., Bose–Einstein condensates submitted to a laser light, but we

shall not restrict ourselves to this particular physical situation and keep on considering a generic particle

submitted to both oscillating and quadratic potentials through (6).
4.1. The parabolic band approximation

We first place ourselves under the restriction of a moderate initial velocity in order to use the so-called

‘‘parabolic band approximation’’, see [29,43] in the present context, which consists in considering the nth
energy band as given by a parabola parametrized by the effective mass:

EnðjÞ ’ Enð0Þ þ
j2

2m� ; m� > 0:

In case the periodic potential in (6) is V ðxÞ ¼ cosðxÞ, we found the parameters E3ð0Þ ¼ 0:8536 and
m� ¼ 0:2783. Then again, it is possible to solve the differential system of characteristics; indeed, from (22)

and (23), one derives

_X
_U

� �
¼ 0 1

m�

�1 0

� �
X
U

� �
; X ð0Þ ¼ X0; Uð0Þ ¼ u0ðX0Þ:

The corresponding spectrum is K ¼ f�i=
ffiffiffiffiffiffi
m�

p
g and this yields a rotation in phase space:

X ðtÞ ¼ cosðt=
ffiffiffiffiffiffi
m�

p
ÞX0 þ sinðt=

ffiffiffiffiffiffi
m�

p
Þu0ðX0Þ=

ffiffiffiffiffiffi
m�

p
;

Uðt;X ðtÞÞ ¼ �
ffiffiffiffiffiffi
m�

p
sinðt=

ffiffiffiffiffiffi
m�

p
ÞX0 þ cosðt=

ffiffiffiffiffiffi
m�

p
Þu0ðX0Þ:

	

Under the assumption of validity for this band approximation, one may use WB routines:

8j 2 Z;
~u�
jþ1

2

¼ signð~u�
jþ1

2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~ujþ1Þ2 þ m�ðx2jþ1 � x2j Þ

q
;

~uþ
j�1

2

¼ signð~uþ
j�1

2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~uj�1Þ2 þ m�ðx2j�1 � x2j Þ

q
:

8<
:
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Thus, following (29), one deduces the ‘‘interface moments’’ ~m�
jþ1

2

to be inserted inside (28) in order to

propagate K-branch solutions as times increase. As a byproduct, one is actually able to recover accurately

the intensities relying on (31); more precisely,

lðt;X Þ ¼ l0ðX0Þ oX
oX0

��� ����1

¼ l0ðX0Þ cosðt=
ffiffiffiffiffiffi
m�

p
Þ þ sinðt=

ffiffiffiffiffiffi
m�

p
Þu00ðX0Þ

�� ���1
;

X0 ¼ cosðt=
ffiffiffiffiffiffi
m�

p
ÞX � sinðt=

ffiffiffiffiffiffi
m�

p
ÞUðt;X Þ=

ffiffiffiffiffiffi
m�

p
:

(

We set up the following initial data in order to carry out a numerical test on x 2 ½0; 2p�:

VeðxÞ ¼
ðx� pÞ2

2
; u0ðxÞ ¼ 0:3 sinðxÞ; l0ðxÞ ¼ exp

�
� ðx� pÞ2

�
;

and the results for Dx ¼ 2p=512 and t ¼ 0:7 are displayed on Fig. 7 where an exact ray-tracing solution is
shown for comparison, see also the results in [28,33,34]. It can be noticed that the smearing of the phase

boundaries on the 3-branch solutions causes two artificial spikes around x ¼ 3 and x ¼ 3:4 on the corre-

sponding intensities.

4.2. Computation in the entire Brillouin zone

Looking at Fig. 7, one sees that the crystal momentum~uðt; �Þ went far beyond the limits of the Brillouin

zone B ¼ ½� 1
2
; 1
2
� on both sides of the domain; so the parabolic band approximation is not justified at all in

this case and the correct expression (17) has to be used instead. A drawback is that the differential system
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Fig. 7. ‘‘3-branch solutions’’ ~u, ~l in T ¼ 0:7 (bottom) and ray-tracing solution (top).
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(22) and (23) cannot be solved explicitly any more. Moreover, the Eqs. (28) and (29) become more delicate

to handle. So one may choose to rely on the time-splitting approach (30).

Another consequence is that the use of the formula (35) involving discrete differentiation cannot be

avoided in order to deduce intensities. However, in the present situation, the function F (34) is not

monotone; so in the regions where two roots sk are available for some ðtn; xj;~unj Þ, we shall always select the
value minimizing the discontinuities. Hence it is interesting to set up this scheme with the preceding initial

data to evaluate the reliability of both the parabolic band approximation and formula (35) to deduce in-

tensities. The results Dx ¼ 2p=1024 and t ¼ 0:85 are displayed on Fig. 8. For a validation, we shall compare
this approximation with a direct simulation of Schr€odinger equation (6) later in Section 6.3.
5. Interaction with hydrogenic impurities; harmonic potential

On of the most important properties of semiconducting materials is that both the type and the quantity

of charge carriers can be controlled through a process called doping. For instance, if a small quantity of

Arsenic (with 5 valence electrons) is added to molten Germanium (with only 4), these impurities will
crystallize into a diamond-like structure [1]. Four of the Arsenic valence electrons will participate in

forming the energy bands, and the fifth one can be considered essentially free. At T ¼ 0 temperature, its

energy levels satisfy the ‘‘hydrogenic Hamiltonian’’ (3) and usually lie inside the gap below the conduction

band. Hence much less energy is needed in order to make it reach the conduction band compared to the one

which would be necessary for the valence electrons to trigger interband transition. Thus such an alloy

contains negative charge carriers in its conduction band and is known as an n-type semiconductor. These

impurities are hydrogenic donor atoms.

5.1. The Kronig–Penney model for materials with impurities

We can model this situation in a schematic way relying on the elementary Kronig–Penney model by

making one of its wells a bit deeper than the others, just imagining that this one contains two electrons

instead of one (the opposite ‘‘p-type’’ case, for instance, when Gallium with valence 3 is added to Ger-

manium, is modelled in a similar way with a well a bit higher than the others and would not be considered

any further). This allows for explicit computations whereas Coulomb term inside the hydrogenic Hamil-

tonian (3) does not.
To be more precise, we begin by approximating the differential term in (3) by means of the effective mass

theory in order to get a more tractable problem,
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1

2m� oyyWðyÞ þ ðE � V ðyÞÞW ¼ 0; V ðyÞ ¼ 1� 21jyj6 p: ð44Þ

This differential equation splits into two thanks to the form of V ,

1

2m� oyyW1ðyÞ þ ðE þ 1ÞW1 ¼ 0;
1

2m� oyyW2ðyÞ þ ðE � 1ÞW2 ¼ 0;

coupled by boundary conditions in �p:

W1ð�pÞ ¼ W2ð�pÞ; oyW1ð�pÞ ¼ oyW2ð�pÞ:

A base of solutions is expð�j1yÞ and expð�j2yÞ with j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ð1� EÞ

p
and j2 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ð1þ EÞ

p
. The C1

regularity requirement in y ¼ �p implies that,

j2 ¼ j1 tanðpj1Þ; j2 ¼ j1 cotanðpj1Þ;

together with:

ðj1Þ2 þ ðj2Þ2 ¼ 4m�:

This set of algebraic equations can be solved and results for m� ¼ 0:2 are shown in Fig. 9. There are three

bound states associated to (44), one of them being located just below the conduction band.

5.2. Numerical simulation of the Coulomb interaction

We consider the Kronig–Penney’s potential as in (41) and we set up the ‘‘3-branch systems’’ (25) with the

Coulomb term reading
–0.5–0.4–0.3–0.2–0.1 0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

–0.5 –0.4–0.3–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 9. Lowest energy bands and parabolic approximation for Kronig–Penney’s model (left), with two hydrogenic levels superimposed

(right).



0 1 2 3 4 5 6 7
0

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36

0 1 2 3 4 5 6 7
0

0.4

0.8

1.2

1.6

2.0

2.4

0 1 2 3 4 5 6 7
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 1 2 3 4 5 6 7
–2

10

–1
10

0
10

1
10

2
10

Fig. 10. ‘‘3-branch solutions’’ ~u and ~l in T ¼ 0:2 (left) and T ¼ 1:5 (right).

L. Gosse / Journal of Computational Physics 201 (2004) 344–375 365
VeðxÞ ¼ � 1

jx� 7j ; x 2 ½0; 2p�;

which means that the ionized impurity stands a bit outside of the right border of the computational domain.

This allows to prevent numerical overflow issues during computations (another possibility could have been

to truncate it). Numerical simulations are carried out relying on (26)–(30) with initial data:

u0ðxÞ ¼
3

10p
expð�ðx� pÞ2Þ; l0ðxÞ ¼

1

2p
: ð45Þ

We chose Dx ¼ 2p=512, Dt ¼ 2Dx=3 and computed the quantities appearing in the WKB ansatz in both

T ¼ 0:2 (single-valued solution) and T ¼ 1:5 (two cusps have developed); see Fig. 10. One can observe that

the attractive Coulomb term increases the ‘‘crystal momentum’’ in a close neighbourhood of the impurity

location. Because of the periodicity of j 7!EðjÞ, this makes the particle oscillate inside this region and
multivaluations develop. The corresponding intensities have been computed by means of (35) after solving

(34) for all xj 2 ½0; 2p� since for our data (45), (33) is strictly decreasing. We shall come back to this case in

Section 6.2.
6. Comparisons with direct Schr€odinger simulations

In order to check consistency with the genuine Schr€odinger equation, we simulated some variants of (2)
with initial data corresponding to (14) by means of a Fourier solver in order to compare the resulting

position densities. We have in mind to extend the consistency results of [26]. For simplicity in the pre-

sentation, we worked with Mathieu’s potential V ðxÞ ¼ cosðxÞ; however, results would be similar for Kro-

nig–Penney’s model.
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6.1. Homogeneous case: post-breakup consistency

As we believe it is an important question whether or not the present WKB strategy can permit to recover
reliable approximations of quadratic observables in the small e regime, let us come back first to the nu-

merical tests already carried out in [29], namely:

• a set of initial data which permit to compute within the so-called ‘‘parabolic band approximation’’:

u0ðxÞ ¼ 0:3 sinðxÞ; l0ðxÞ ¼ exp
�
� ðx� pÞ2

�
; ð46Þ

• another one which takes place inside the full Brillouin zone ½� 1
2
; 1
2
�:

u0ðxÞ ¼
1

2
exp

�
� ðx� pÞ2

�
; l0ðxÞ ¼

1

p
exp

�
� ðx� pÞ2

�
: ð47Þ

As both ray-tracing and K-branch solutions have been displayed in [29], we want here to concentrate

more on the consistency with a direct Schr€odinger computation carried out relying on the time-splitting

spectral schemes presented in [2]. We recall now briefly the numerical Fourier solver they set up for solving

(2) with V ðxÞ ¼ cosðxÞ and some exterior potential VeðxÞ. One sets up the ansatz (14) which reads (we

dropped the nth band index for clarity):

weðt ¼ 0; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0ðxÞ

p
expðiu0ðxÞ=eÞzu0ðxÞðx=eÞ: ð48Þ

Then, the corresponding solution weðt; �Þ is expanded in its Fourier series for x 2 ½0; 2p�:

weðt; xÞ ¼
X
q2Z

ŵe
qðtÞ expðiqxÞ; ŵe

qðtÞ ¼
1

2p

Z 2p

0

weðt; xÞ expð�iqxÞdx;

and a time-step Dt > 0 being given, one solves iteratively the free Schr€odinger equation by means of an

explicit Fourier scheme,

ieotw
e þ e2

2
oxxw

e ¼ 0 () ŵe
qðtÞ ¼ exp

�
� ieðt � t0Þq2=2

�
ŵe

qðt0Þ; t > t0 P 0;

for q 2 Z, and then the differential equation associated with both potentials:

ieotw
e ¼ V

x
e

� ��
þ VeðxÞ

�
we () weðt; xÞ ¼ exp

�
� iðt � t0Þ V ðx=eÞ½ þ VeðxÞ�=e

�
weðt0; xÞ:

We refer to [2] for more details. Since this approach needs to use repeatedly the fft algorithm, we used
only vectors which length is a power of 2 in order to maximize the efficiency. Concerning the WKB ap-

proximation, according to [29] Section 3.2, its ‘‘3-branch position density’’ qe
WKBðt; xÞ is meant to be:

qe
WKBðt; xÞ ¼

l2ðt; xÞjznu2ðt;xÞðx=eÞj
2

if js1 � s3jðt; xÞ6 aDx;P3

k¼1 lkðt; xÞjznukðt;xÞðx=eÞj
2

otherwise:

(
ð49Þ

Of course, the skðt; xÞ aforementioned are the roots of the equation (34) solved at any time t for all

x 2 ½0; 2p�. We selected Dt ¼ 0:01 independent of e and a ¼ 5. Comparing the position densities for initial
data (46) gives the outcome displayed on Fig. 11. Following [13], we tried to check on the right column a

weak convergence as e ! 0 by looking at the antiderivative of the difference of the densities; thus we shall

study the function

x 7!
Z x

0

qe
WKBðT ; sÞ

�
� jweðT ; sÞj2

�
ds; ð50Þ
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which can be expected to flatten as e is decreased. Lemma 2.1 in [13] ensures that the L1 norm of (50) going

to zero is equivalent to the weak convergence of qe
WKB. On Fig. 12, we display the evolution of both

qe
WKB � jwej2 and (50) in the L1ðRÞ norm; only weak convergence seems to be possibly hoped for, as could

have been expected, [10,22,39]. One can explain the strongly ‘‘non-monotonic’’ decay of Fig. 12 as follows:

the biggest source of error is generally located on the caustic curve, so according to the value of the

modulations jznukðt;xÞðx=eÞj
2
at these points, the L1 norm of (50) can change notingly.

The comparison of position densities for the initial data (47) leads to the results shown on Fig. 13. Since

the crystal momentum is bigger, more caustics developed and the outcome is more complex; see [29] Fig. 9

for a ray-tracing picture. We also tried to check weak convergence of the densities numerically through the

function (50) becoming flat on Fig. 13. Despite the fact we could not obtain a clear picture like Fig. 12 we
notice that the interval of variation is smaller for e ¼ 1=30 than for e ¼ 1=15. After breakup, the Fourier

scheme can be completely overwhelmed for too small values of eM ; in such a case, the quadratic observables

are simply wrong as explained in, e.g., [2,40]. We tried to avoid this phenomenon by using a high number of

coefficients inside our Fourier schemes: Figs. 11 and 13 have been obtained with 4096 coefficients.
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The general aspect of the position density looks like being stable for reasonably small values of e. This
suggests that both the WKB ansatz (15) and the ‘‘3-branch density’’ (49) could be valid for (6) with

VeðxÞ � 0 in the semiclassical regime. The next subsections are devoted to the nonhomogeneous case
VeðxÞ 6¼ 0.

6.2. Nonhomogeneous case: the Coulomb potential

We are again concerned with the case where (6) is endowed with the Coulomb interaction term as in

Section 5.2 with identical initial data (45):
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VeðxÞ ¼ � 1

jx� 7j ; V̂ ‘
e ¼ 1

2p

Z 2p

0

VeðxÞ expð�i‘xÞdx:

As explained in [29], Section 5.3, for all t > 0, the Fourier coefficients ŵqðtÞ satisfy the following differential

system because for the Mathieu’s equation, we have V ðxÞ ¼ expðixÞþexpð�ixÞ
2

:

8q 2 Z; ie
d

dt
ŵe

qðtÞ ¼
1

2
ŵe

q�1
e
ðtÞ

�
þ q2e2ŵe

qðtÞ þ ŵe
qþ1

e
ðtÞ
�
þ
X
‘2Z

V̂ ‘
e ŵ

e
q�‘ðtÞ; ð51Þ

where V̂ ‘
e stand for the Fourier coefficients of the exterior potential. This differential equation can be in-

tegrated as soon as the coefficients ðV ‘
e Þ‘2Z are known. However, such a numerical approach is limited

because of the matrix exponential expm function, whose accuracy decreases with the number of Fourier

modes involved and in practice does not allow to go beyond 512 modes. Hence we shall again rely on the

time-split Fourier schemes advocated in [2] in order to carry out reliable Schr€odinger simulations. We

chosed to work again with 4096 modes whereas the density corresponding to the WKB ansatz has been
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Fig. 16. Comparison qe
WKB (solid) vs. jwej2 (dotted) in logarithmic scale for e ¼ 1=35; 1=65 (left to right) with quadratic potential and

T ¼ 1:5.
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bottom) with quadratic potential.
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obtained with a coarser computational grid Dx ¼ Dt ¼ 2p=1024. We compare it to jweðT ; �Þj2 at times

T ¼ 0:2 (no singularity) and T ¼ 1:5 (two cusps) see Fig. 10). We observe on both Figs. 14 and 15 a be-

haviour similar to the one we saw in the preceding subsection for homogeneous problems; the intervals of
variation for the function (50) are much bigger beyond caustic onset, see Fig. 15. It also looks like if the

WKB approximation was a sort of ‘‘space average’’ of the more peaked Schr€odinger solution, see especially
Fig. 14. In particular, this figure reveals the behaviour of the time-splitting Fourier scheme in a situation

where strong convergence as e ! 0 is well-known. We finally stress that reaching a clear consistency result

is not a simple task because the initial data (48) are already a bit noisy since the modulations zj are not

known analytically. Further, the energy bands are still approximations obtained out of the numerical di-

agonalization of (16) and small errors are likely to propagate inside the moment systems (25) and the

scheme (27). At last, the Fourier schemes may generate other kinds of errors from the noisy initial data and
the (tacitly assumed) periodic boundary conditions; all of these have few reasons to compensate exactly.

The use of a Krasny filer [2,14], can be of some help. The situation of the free Schr€odinger equation in-

vestigated in [26] is much easier in the sense that the initial WKB ansatz is known analytically and the

Fourier scheme is exact up to the very small fft errors.
6.3. Nonhomogeneous case: the quadratic potential

For the sake of completeness, we apply the preceding technique to carry out comparisons with the
harmonic oscillator case already studied in Section 4.2. Results are shown in Fig. 16 in logarithmic scale

and 17. The strong caustics are easily seeable in the WKB approximation; they are located inside a region

where the Schr€odinger solution varies highly itself. The intervals of variation for (50) decrease again with e
despite they are again quite big compared to the homogeneous case, compare with Fig. 11. The inad-

equation of the classical WKB method on caustics is very apparent on these graphs since, there, the error

dominates completely. This means in particular that one still can not expect any monotonic decay of the L1

norm of (50) as e is decreased, even if the weak consistency looks rather satisfying on Fig. 17.
7. Conclusion and outlook

We have presented in this paper an algorithm to compute the semiclassical-homogenization limit of

Schr€odinger’s equation (2) including commonly encountered exterior potentials. The two main difficulties

are the indeterminacy of the energy bands, which must be used to compute numerical fluxes, and the re-

covery of the intensities, which is done relying on energy’s conservation along Hamiltonian trajectories, see

(32). Together with previous techniques [29], this allows to reconstruct ‘‘multiphase WKB observables’’ of
the type (49) which appear to be quite consistent with the solution of linear Schr€odinger’s equation.

However, this framework is somewhat limited in the sense that it completely discards the interactions of

electrons with each other. As is well-known, the mean-field approximation of (5) is given by the

Schr€odinger–Poisson (Hartree) equation. In our 1D context which essentially models particular systems

endowed with translational invariance in 2 directions, it reads

i�hotwþ �h2

2m
oxxw ¼ e V ðxÞð þ eUðt; xÞÞw; x 2 R; ð52Þ

where V still stands for the periodic potential of the lattice, but U is given by the self-consistent Poisson’s

equation:

��0oxxUðt; xÞ ¼ jwðt; xÞj2 � dðxÞ;
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and dðxÞ is the doping profile, that is, the concentration of impurities in the crystal. It has been very recently

shown, cf., [4], that for a medium’s dielectric permittivity �0 ¼ 1 and �h ¼ m ¼ 1, the semiclassical limit of

this system is given by the Vlasov–Poisson problem for f ðt; x; nÞ:

otf þ E0ðnÞoxf � DðxÞ
 

�
Z x Z

Rn

f dndx0
!
onf ¼ 0; ð53Þ

with DðxÞ being an antiderivative of the doping profile. A new nonlinear term arises: hence it is not clear

whether the superposition principle can still be expected to hold in this case. This question will be inves-

tigated in details in the forthcoming Part 3 of this research.
Appendix A. One difficulty for the Schr€odinger–Poisson system

From [4], we know that the problem (52) admits as its semi-classical limit the Vlasov–Poisson equation

(53) for initial data belonging to the convenient energy band, see Theorem 4.2 in [4] for the precise

statement. Indeed, the (formal) WKB equations coming from (52) read

otuþ EðoxuÞ þ Uðt; xÞ ¼ 0; otlþ oxðE0ðoxuÞlÞ ¼ 0; ðA:1Þ

for which characteristics solve a somewhat simple differential system because in 1D and if the effect of the

orthonormal modulations znj is neglected, the electric field satisfies F ðt; xÞ ¼ �oxUðt; xÞ ¼
R x lðt; sÞds and

thus solves a transport equation:

F ðt; xÞ ¼
Z x

lðt; sÞds ) otF þ E0ðuÞoxF ¼ 0; u ¼ oxu:

This precisely implies that it remains constant along characteristics. Solutions of (53) without doping

profile dðxÞ � 0 which remain monokinetic [37] correspond to the following Cauchy problem:

X ðt ¼ 0Þ 2 R;Uð0;X ð0ÞÞ ¼ oxu0ðX ð0ÞÞ; F ð0;X ð0ÞÞ ¼
R X ð0Þ l0ðxÞdx;

_X ðtÞ ¼ E0ðUðt;X ðtÞÞÞ; _Uðt;X ðtÞÞ ¼ F ðt;X ðtÞÞ; _F ðt;X ðtÞÞ ¼ 0:

(
ðA:2Þ

If one assumes furthermore the parabolic band approximation EðUÞ ¼ U 2=2m�, (A.2) admits the explicit

solution: 8t > 0, F ðt;X ðtÞÞ ¼ F ðt ¼ 0;X ð0ÞÞ and

X ðtÞ ¼ X ð0Þ þ t
m� Uð0;X ð0ÞÞ þ t2

2m� F ð0;X ð0ÞÞ; Uðt;X ðtÞÞ ¼ Uð0;X ð0ÞÞ þ t:F ð0;X ð0ÞÞ:

The feature that t 7!F ðt;X ðtÞÞ remains constant allows to both integrate (A.2) and to produce a simple
algorithm to generate smooth solutions of (A.1), see [37], relying on the ideas presented in this paper.

However, this approach is not valid beyond breakup time because one must instead consider

F ðt; xÞ ¼
PK

k¼1

R x lkðt; sÞds, which expresses the fact that each of the K branches of solution is subject to the

same overall electric field (independent of n in (53)). This feature is not reflected inside (A.2) so another

algorithm is needed in order to study numerically the semiclassical limit of (52).
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